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1. Introduction

Let x := x1, . . . , xm and y := y1, . . . , yn be two sets of variables; the first ones represent 
the independent variables (i.e. those defining the partial derivations) and the second ones 
are considered as differential unknowns.

The notion of Pfaffian system is introduced by J.F. Pfaff in [22] and in its simplest 
form it is defined as a system of partial differential equations of the type:

Σ :=
{

∂yi
∂xj

= fij(x,y) i = 1, . . . , n, j = 1, . . . ,m, (1)

where each fij is an analytic function around a certain fixed point (x0, y0) ∈ C
m × C

n.
The properties of these systems were extensively studied during the XIXth century 

by notable mathematicians as Jacobi [13], Clebsch [2] and Frobenius [6] (see also [11]
for a detailed historical approach). One of the main problems considered is the so-called 
complete integrability of a Pfaffian system Σ: the existence of a neighborhood U of the 
point (x0, y0) such that for every point (x̂, ̂y) ∈ U there exists a solution γ of Σ such 
that γ(x̂) = ŷ. A complete solution of this problem is known today as the “Frobenius 
Theorem” (see [6]):

Frobenius Theorem. Let Σ be the Pfaffian system (1). Then Σ is completely integrable 
in (x0, y0) if and only if for all indices i, j, k with i = 1, . . . , n, and j, k = 1, . . . , m, the 
function Dj(fik) −Dk(fij) vanishes in a neighborhood of (x0, y0).

Here, Dj(h) denotes the j-th total derivative with respect to Σ of any analytic function 

h in the variables (x, y), namely Dj(h) := ∂h

∂xj
+

n∑
i=1

∂h

∂yi
fij . Observe that the vanishing 

of the functions Dj(fik) −Dk(fij) is clearly a necessary condition because of the equality 
of the mixed derivatives of an analytic function, but the sufficiency is not obvious.

We remark that Frobenius Theorem is more general than the statement above because 
it remains true also for systems of differential linear 1-forms (today called Pfaffian forms). 
In this sense Frobenius’s article may be considered as a main source of inspiration for 
the transcendental work by Cartan about integrability of exterior differential systems 
developed in the first half of the XXth century (see [1]).

In Cartan’s theory two notions play a main rôle: the prolongation and the involutivity
of an exterior differential system. In the particular case of differential equation systems 
these notions can be easily paraphrased. The prolongation of a system consists simply in 
applying derivations to it. On the other hand, an involutive system is a system with no 
hidden integrability conditions; in other words, no prolongation is necessary to find new 
constraints. Roughly speaking, the involutive systems are those to which the classical 
method of resolution by means of a power series with indeterminate coefficients (known 
as Frobenius method) can be applied in order to search for a solution or to decide that 
the system is not integrable.



L. D’Alfonso et al. / Advances in Applied Mathematics 72 (2016) 175–194 177
A main general result related to the integrability in Cartan’s theory is the Cartan–
Kuranishi Principle: Any (generic) exterior differential system can be reduced to an 
equivalent involutive system by a finite number of prolongations and projections. This 
result, conjectured by Cartan, is finally proved by Kuranishi in [18] (see also [20]). De-
spite the algebraic precisions given during the ’60s and ’70s (see for instance [27,9,26]) 
and more recently in [24] and [25], up to our knowledge, no effective a priori upper 
bounds for the number of required differentiations nor projections are established.

In this paper we use arguments close to the Cartan–Kuranishi Principle (namely, pro-
longations and projections) in order to study the integrability (not necessarily complete) 
of differential–algebraic Pfaffian systems. More precisely, a differential–algebraic Pfaffian 
system is a system of partial differential equations Σ as follows:

Σ :=

⎧⎨⎩
∂y
∂x = f(x,y)
g(x,y) = 0

where f := (fij)ij and g := g1, . . . , gs are polynomials in C[x, y]. As before, x :=
x1, . . . , xm and y := y1, . . . , yn denote sets of variables.

By means of prolongations and projections we construct a decreasing chain of algebraic 
varieties Cm+n ⊇ V0 ⊇ V1 ⊇ · · · which becomes stationary at the (m + n + 1)th step 
or earlier. If we denote by V∞ the smallest variety of the chain, we prove the following 
criterion for integrability (see Theorem 15 and the comments that follow it):

Theorem 1. The system Σ is integrable if and only if the algebraic variety V∞ is non-
empty. The analytic variety of all the regular points of V∞ is the biggest analytic variety 
containing all the graphs of analytic solutions of Σ.

Moreover, by means of basic algorithms from commutative algebra, the criterion 
can be transformed in a decision algorithm which runs within a complexity of order 
(nmσd)2O(n+m)3 , where d is an upper bound for the degrees of the involved polynomials 
and σ := max{1, s} (see Theorem 19). The notion of complexity we use is the number 
of arithmetic operations and comparisons with elements of the field of coefficients. As 
a byproduct, we obtain an upper bound of the same order for the order of differenti-
ations in the differential Nullstellensatz for differential–algebraic Pfaffian systems (see 
Theorem 23). In this sense, the present work can be seen as a continuation of [3].

The paper is organized as follows. In Section 2, first, we introduce the notation we use 
throughout the paper; then, we show how to reduce the integrability problem of general 
(non-autonomous) differential Pfaffian systems to the autonomous case; finally, we prove 
our integrability criteria. Section 3 is devoted to analyzing quantitative aspects of the 
problem: we present an effective decision method for the integrability of differential–
algebraic Pfaffian systems and we prove an upper bound for the order in the differential 
Nullstellensatz for these systems.
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2. A geometrical criterion for the integrability of differential–algebraic Pfaffian systems

In this section we exhibit a necessary and sufficient criterion for the integrability of 
differential–algebraic Pfaffian systems in terms of the dimension of a finite decreasing 
sequence of algebraic varieties associated to the differential system (see Definition 7
and Theorem 15). These varieties can be constructed explicitly by means of three basic 
operations: prolongations (i.e. differentiations), linear projections and reductions (i.e. 
computation of radicals of polynomial ideals).

2.1. Notations

Let m, n ∈ N. We consider two sets of variables x := x1, . . . , xm (the so-called in-
dependent variables) and y := y1, . . . , yn (the variables playing the role of differential 
unknowns). For each pair (i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m, let fij be a polynomial in the 
ring C[x, y]. Finally, let g := g1, . . . , gs ∈ C[x, y] be another finite set of polynomials.

A differential–algebraic Pfaffian system is defined as a partial differential system Σ of 
the type:

Σ =

⎧⎨⎩
∂yi
∂xj

= fij(x,y), 1 ≤ i ≤ n, 1 ≤ j ≤ m,

gk(x,y) = 0 1 ≤ k ≤ s,
(2)

or in its simplified form:

Σ =

⎧⎨⎩
∂y
∂x = f(x,y),
g(x,y) = 0

where f denotes the set of polynomials fij . If the polynomials f and g do not depend on 
the variables x, we say that the Pfaffian system Σ is autonomous.

For each index j = 1, . . . , m and any polynomial h ∈ C[x, y] we define the total 
derivative with respect to xj induced by Σ as

Dj(h) := ∂h

∂xj
+

n∑
i=1

∂h

∂yi
fij .

Observe that Dj(h) belongs to the polynomial ring C[x, y] and that the operator Dj is 
a derivation in this ring.

2.2. Frobenius compatibility conditions

We are interested in the integrability (or solvability) of differential–algebraic Pfaffian 
systems. This notion should be understood as the existence of an analytic solution γ
defined in an open subset of Cn with target space Cm.
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A stronger notion is that of complete integrability, which means that there exists a 
neighborhood U ⊂ C

m+n around (x0, y0), such that for any (x̂, ̂y) ∈ U there exists a 
solution γ of Σ verifying γ(x̂) = ŷ (note that this notion only makes sense in the case that 
no algebraic constraints appear, because such a constraint never contains a nonempty 
open set). If this is the case for the system Σ, the classical Frobenius Theorem (see for 
instance [4, Ch.X, §9]) gives a simple criterion for complete integrability: Σ is completely 
integrable around (x0, y0) if and only if the compatibility conditions Dj(fi�) −D�(fij) ≡ 0
hold for all triplets i, j, � in a suitable neighborhood of (x0, y0).

Our systems are in a certain sense more general than those considered in Frobenius’s 
result (more constraints appear) and we are interested in a weaker notion of integrability. 
In order to begin our analysis, we introduce the following ideal which will enable us to 
deal with the Frobenius compatibility conditions and will be involved in the first step of 
our criterion:

Notation 2. For a given Pfaffian system Σ as in (2) we denote by F the ideal in the poly-
nomial ring C[x, y] generated by the polynomials Dj(fik) −Dk(fij) for all indices i, j, k.

If no algebraic constraints appear in Σ, the classical Frobenius Theorem in the 
differential–algebraic setting can be restated as follows: Σ is completely integrable if 
and only if the polynomial ideal F is zero. On the other hand, if such a system Σ is 
integrable, the ideal F must be properly contained in C[x, y], since if γ is a solution, all 
polynomial in F vanishes at the vector (x, γ(x)). However, this condition (namely, the 
properness of F) is not enough to guarantee simple integrability:

Example. Consider the Pfaffian system

∂y

∂x1
= y2 ,

∂y

∂x2
= y2 + 1.

In this case, n = 1, m = 2, and no constraint appears. It is obvious that if γ is a solution, 
then it is not a constant function because the polynomials y2 and y2+1 have no common 
zeros. The ideal F is generated by the polynomial 2y(y2 + 1) − 2yy2 = 2y and then it 
is proper. On the other hand, any solution γ must verify the equation 2γ = 0 and in 
particular γ is a constant, leading to a contradiction.

2.3. From non-autonomous to autonomous systems

We begin by showing that the problem of the integrability of a (general) differential 
Pfaffian system

Σ =

⎧⎨⎩
∂y
∂x = f(x,y)
g(x,y) = 0

can be reduced to analyzing the integrability of an autonomous Pfaffian system.
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To this end, we transform Σ into an autonomous Pfaffian system Σaut in the obvious 
way, by introducing new differential unknowns w := w1, . . . , wm (as many as independent 
variables):

Σaut =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y
∂x = f(w,y)

∂w
∂x = δ

g(w,y) = 0

(3)

where δ denotes the Dirac-symbol (i.e. δj� = 1 if j = �, and 0 otherwise). Clearly Σaut is 
an autonomous system in m +n unknowns and m independent variables; moreover, it is 
equivalent to Σ from the integrability point of view:

Proposition 3. The Pfaffian system Σ is integrable if and only if the autonomous Pfaffian 
system Σaut is integrable.

Proof. Let γ : U ⊂ C
m → C

n be a solution of Σ; then ψ : U → C
m+n defined as 

ψ(x) := (x, γ(x)) is a solution of Σaut. Reciprocally, let ψ : V → C
m+n be a solution of 

Σaut in a connected neighborhood of a certain x1 ∈ C
m. From the second part of the 

defining equations of Σaut one deduces that ψ(x) = (x + λ, ξ(x)) for a suitable vector 
λ ∈ C

m and an analytic function ξ : V → C
n. Take x0 := x1 + λ and U := V + λ. Define 

γ(x) := ξ(x − λ). Thus γ : U → C
n verifies:

∂γi(x)
∂xj

= ∂ψm+i(x − λ)
∂xj

= fij(ψ(x − λ)) = fij((x − λ) + λ, ξ(x − λ)) = fij(x, γ(x))

and

g(x, γ(x)) = g((x − λ) + λ, ξ(x − λ)) = g(ψ(x − λ)) = 0.

In other words, γ is a solution of Σ. �
2.4. Prolongation chains

Taking into account the result of the previous section, for simplicity, we restrict now 
our attention to considering the autonomous case, namely, differential–algebraic Pfaffian 
systems of the form

Σ =

⎧⎨⎩
∂y
∂x = f(y),
g(y) = 0

(4)

where f and g are finite sets of polynomials in C[y]. In this setting, for a polynomial 
h ∈ C[y], the total derivative of h with respect to xj induced by Σ is
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Dj(h) =
n∑

i=1

∂h

∂yi
fij ∈ C[y].

First, we introduce the so-called prolongation of an ideal in C[y]:

Definition 4. Let I ⊂ C[y] be an arbitrary ideal and F be a finite system of generators 
of I. We denote by Ĩ the ideal of the polynomial ring C[y] generated by I and the 
polynomials Dj(f) for all f ∈ F and j = 1, . . . , m.

Proposition 5. The ideal Ĩ is independent of the system of generators F of I.

Proof. Let G be another system of generators of I. It suffices to see that for any k =
1, . . . , m and any g ∈ G the polynomial Dk(g) belongs to the ideal generated by I and 
the polynomials Dj(f). Writing g =

∑
f∈F

pf f and using that Dj is a derivation in C[y], 

we deduce:

Dj(g) =
∑
f∈F

Dj(pf f) =
∑
f∈F

Dj(pf ) · f +
∑
f∈F

pf ·Dj(f).

Since the first term belongs to (F) = I and the second one to the ideal generated by the 
polynomials Dj(f), the proposition follows. �

We start proving an elementary test to check integrability by means of a prolongation 
and a projection, which will be the key result to our criteria. This lemma can be seen as 
an extension to Pfaffian systems of the results given in [23, Section 2], [12, Fact 3.7] and 
[3, Lemma 9] for the ordinary case.

Lemma 6. Let Σ be an autonomous differential–algebraic Pfaffian system:

Σ =

⎧⎨⎩
∂y
∂x

= f(y),
g(y) = 0

where f and g are finite sets of polynomials in C[y]. Let I :=
√

(g) and J :=
√
F + Ĩ, 

where F ⊂ C[y] is the ideal generated by the Frobenius conditions, as in Notation 2, and 
let V ⊇ W be the varieties defined by I and J respectively. Suppose that V and W are 
the same nonempty variety in a neighborhood of a common regular point Q ∈ C

n. Then 
Σ is integrable. Moreover, there exists a solution of Σ passing through the point Q and 
contained in W.

Proof. From the hypotheses, the ideals I and J define the same nonempty algebraic 
variety C locally around Q (more precisely, there exists a nonempty open neighborhood 
O of Q in Cn such that V ∩ O = W ∩ O and C is the Zariski closure of this set). 
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Let g0 be a finite system of generators of I. Since Q is a regular point of C, we can 
apply the Theorem of Implicit Functions to the system g0 = 0 and so, without loss of 
generality (reordering the variables if necessary) we may suppose that there exists an 
integer r > 0 such that, if y := y1, . . . , yr and ŷ := yr+1, . . . , yn, the variety C is locally 
defined around Q = (y0, ̂y0) as the graph of an infinite differentiable function ϕ defined 
in a neighborhood U ⊂ C

r of y0 with target space Cn−r. The integer r is the dimension 

of C, the rank of the Jacobian matrix 
∂g0

∂y
in a neighborhood of Q in C is constant and 

equal to n − r, and moreover, the submatrix 
∂g0

∂ŷ has locally maximal rank n − r.

Let f := (f ij) with i = 1, . . . , r, j = 1, . . . , m, where f ij(y) := fij(y, ϕ(y)). Consider 
the following partial differential (not necessarily algebraic) Pfaffian system Σ induced by 
Σ and ϕ:

Σ :=
{

∂y
∂x = f(y) .

The proof of the lemma will be achieved by showing the following facts concerning the 
system Σ:

• Claim 1. The system Σ is completely integrable in a neighborhood of y0 in Cr.
• Claim 2. If μ is a solution of Σ around y0, then γ := (μ, ϕ ◦ μ) is a solution of Σ.

Proof of Claim 1. From Frobenius Theorem it suffices to prove that for each pair j, k =
1, . . . , m and all i = 1, . . . , r, the relation

r∑
h=1

(
∂f ij

∂yh
(y) fhk(y) − ∂f ik

∂yh
(y) fhj(y)

)
= 0

holds for all y ∈ U (where U is a suitable neighborhood of y0).
From the Chain Rule, for any q = 1, . . . , m, and i, h = 1, . . . , r, we have the equality

∂f iq

∂yh
(y) = ∂fiq(y, ϕ(y))

∂yh
= ∂fiq

∂yh

∣∣∣∣
(y,ϕ(y))

+
n∑

�=r+1

∂fiq
∂y�

∣∣∣∣
(y,ϕ(y))

∂ϕ�

∂yh
(y) ,

where ϕr+1, . . . , ϕn are the coordinates of the function ϕ.
These equalities can be collected in a unique relation in terms of a product of matrices 

evaluated in (y, ϕ(y)) which describes the Frobenius compatibility conditions for the 
system Σ as follows:

(
∂fij
∂y + ∂fij

∂ŷ · ∂ϕ
∂y

)
·

⎛⎜⎝ f1k
...

f

⎞⎟⎠ =
(
∂fik
∂y + ∂fik

∂ŷ · ∂ϕ
∂y

)
·

⎛⎜⎝ f1j
...

f

⎞⎟⎠ (5)
rk rj
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where 
∂ϕ

∂y denotes the (n − r) × r Jacobian matrix of the map ϕ with respect to the 

variables y.
On the other hand, differentiating the identity g0(y, ϕ(y)) ≡ 0 and multiplying by 

the column vector (fij)1≤i≤r, we infer that, for all j = 1, . . . , m,

∂g0

∂y ·

⎛⎜⎝ f1j
...

frj

⎞⎟⎠ + ∂g0

∂ŷ · ∂ϕ
∂y ·

⎛⎜⎝ f1j
...

frj

⎞⎟⎠ = 0 (6)

holds at all the points (y, ϕ(y)).
Finally, from the hypothesis C coincides with V and W in a neighborhood of the 

point Q, we may suppose (shrinking the neighborhood U of y0 if necessary) that 
h(y, ϕ(y)) = 0 for all h ∈ J , in particular since Dj(g) ∈ J for all j = 1, . . . , m and all 
g ∈ g0 we have

∂g0

∂y ·

⎛⎜⎝ f1j
...

fnj

⎞⎟⎠ = 0

in any point (y, ϕ(y)), for all indices j. Again, separating the variables y as before, this 
equality gives

∂g0

∂y ·

⎛⎜⎝ f1j
...

frj

⎞⎟⎠ + ∂g0

∂ŷ ·

⎛⎜⎝ f(r+1)j
...

fnj

⎞⎟⎠ = 0. (7)

Comparing equalities (6) and (7) and recalling that the matrix 
∂g0

∂ŷ has full rank n − r

we infer that

∂ϕ

∂y ·

⎛⎜⎝ f1j
...

frj

⎞⎟⎠ =

⎛⎜⎝ f(r+1)j
...

fnj

⎞⎟⎠ (8)

in any point (y, ϕ(y)) and for all indices j.
In order to finish the proof of Claim 1 it suffices to prove the validity of relation (5). 

Since, by definition, the Frobenius conditions associated to the system Σ are contained 
in the ideal J , we have that

∂fij
∂y ·

⎛⎜⎝ f1k
...

f

⎞⎟⎠ = ∂fik
∂y ·

⎛⎜⎝ f1j
...

f

⎞⎟⎠

nk nj
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holds in a neighborhood of Q relative to the variety C. Splitting the variables y into y
and ŷ as before, this relation can be written

∂fij
∂y ·

⎛⎜⎝ f1k
...

frk

⎞⎟⎠+ ∂fij
∂ŷ ·

⎛⎜⎝ f(r+1)k
...

fnk

⎞⎟⎠ = ∂fik
∂y ·

⎛⎜⎝ f1j
...

frj

⎞⎟⎠+ ∂fik
∂ŷ ·

⎛⎜⎝ f(r+1)j
...

fnj

⎞⎟⎠
Identity (5) is obtained from this formula simply by replacing with relation (8) for the 
indices j and k. This finishes the proof of Claim 1.

Proof of Claim 2. Suppose that μ is a solution of Σ around y0. Clearly the image of 
γ := (μ, ϕ ◦ μ) is contained in C because it is included in the graph of ϕ. In particular γ
verifies the algebraic constraint g = 0.

Decompose γ = (γ, ̂γ) where γ := μ and γ̂ := ϕ ◦ μ. For all j = 1, . . . , m we have the 
relations

∂γ

∂xj
= ∂μ

∂xj
=

⎛⎜⎝ f1j(μ, ϕ ◦ μ)
...

frj(μ, ϕ ◦ μ)

⎞⎟⎠ =

⎛⎜⎝ f1j(γ)
...

frj(γ)

⎞⎟⎠
and

∂γ̂

∂xj
= ∂(ϕ ◦ μ)

∂xj
= ∂ϕ

∂y · ∂μ

∂xj
= ∂ϕ

∂y ·

⎛⎜⎝ f1j(μ, ϕ ◦ μ)
...

frj(μ, ϕ ◦ μ)

⎞⎟⎠ =

⎛⎜⎝ f(r+1)j(γ)
...

fnj(γ)

⎞⎟⎠
where the last equality follows from identity (8). This completes the proof of Claim 2
and therefore also of the lemma. �
2.5. An integrability criterion

We introduce an increasing chain of radical polynomial ideals in C[y] associated to a 
Pfaffian system as in (4) (or its dual counterpart: a descending chain of algebraic varieties 
in Cm) which allows us to give a geometrical criterion for the solvability of the system.

Definition 7. Let (Ip)p∈N0 be the sequence of radical polynomial ideals in C[y] defined 
recursively as follows:

• I0 :=
√

(g), where the equations g = 0 define the algebraic constraint of Σ.

• I1 :=
√

F + Ĩ0, where F ⊂ C[y] is the ideal generated by the Frobenius conditions 
as in Notation 2.

• For p ≥ 1, Ip+1 :=
√

Ĩp.

Here, for p ≥ 0, Ĩp ⊂ C[y] denotes the prolongation ideal introduced in Definition 4.
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By duality, we define for each p ≥ 0 the set Vp ⊂ C
n as the set of zeros of the ideal 

Ip in the affine space Cn.
We obtain an ascending chain of polynomial ideals I0 ⊆ · · · ⊆ Ip ⊆ Ip+1 ⊆ · · · and 

the corresponding descending chain of algebraic varieties V0 ⊇ · · · ⊇ Vp ⊇ Vp+1 ⊇ · · · .
Each step Ip � Ip+1 or Vp � Vp+1 is called a prolongation.

From Proposition 5, both chains (Ip)p∈N0 and (Vp)p∈N0 depend only on the Pfaffian 
system Σ and, by Noetherianity, there exists a minimum integer p∞ where the prolonga-
tions become stationary. Moreover, from the definitions of the chains we observe that if 
an integer p satisfies Ip = Ip+1 (resp. Vp = Vp+1) therefore the chain becomes stationary 
and hence p ≥ p∞. In other words, p∞ is the smallest integer p ≥ 0 such that Ip = Ip+1
(resp. Vp = Vp+1) holds.

This section is devoted to state integrability criteria for autonomous differential–
algebraic Pfaffian systems in terms of the prolongation varieties Vp introduced above.

As a consequence of Lemma 6 we deduce:

Lemma 8. Let Σ be an autonomous differential–algebraic Pfaffian system:

Σ =

⎧⎨⎩
∂y
∂x = f(y),
g(y) = 0

where f and g are finite sets of polynomials in C[y]. Let p ∈ N0 be such that Vp and Vp+1
are the same nonempty variety in a neighborhood of a common regular point Q ∈ C

n. 
Then Σ is integrable. Moreover, there exists a solution of Σ passing through the point Q
and contained in Vp+1.

Proof. Let gp ⊂ C[y] be a finite system of generators of Ip, the defining ideal of Vp. 
Consider the autonomous differential–algebraic Pfaffian system

Σp =

⎧⎨⎩
∂y
∂x = f(y),
gp(y) = 0

Note that the system Σp verifies the assumptions of Lemma 6 with I = Ip and J = Ip+1. 
Then Σp is integrable and there exists a solution of Σp passing through Q and contained 
in Vp+1. The lemma follows from the fact that (g) ⊂ (gp). �
Corollary 9. If the system Σ is not integrable then for all integers p such that Vp �= ∅, 
the inequality dimVp+1 < dimVp holds.

Proof. If the relation dimVp = dimVp+1 holds for some integer p ≥ 0 with Vp �= ∅, since 
Vp+1 ⊆ Vp, the varieties Vp and Vp+1 share a common (nonempty) irreducible compo-
nent C of maximal dimension. Then, any regular point Q ∈ C verifies the hypotheses of 
Lemma 8 and, therefore, Σ is integrable. �
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The following proposition, which is an immediate consequence of Corollary 9, gives a 
first criterion for the integrability of Σ:

Proposition 10. Let Σ be an autonomous differential–algebraic Pfaffian system. Then, 
Σ is integrable if and only if Vp∞ �= ∅.

Proof. First observe that the condition Vp∞ �= ∅ is clearly necessary because if γ is a 
solution of Σ, its image is contained in any variety Vp, in particular, in Vp∞ and then, 
Vp∞ �= ∅. Reciprocally, if Vp∞ �= ∅ but Σ is not integrable, Corollary 9 implies that the 
decreasing chain is not stationary at level p∞, which contradicts the definition of the 
integer p∞. The proposition follows. �
Remark 11. In the language of Proposition 10, the classical Frobenius Theorem can be 
stated as follows: assume that no algebraic constraints appear in the system Σ, then Σ
is completely integrable if and only if Vp∞ = C

n (or equivalently Ip∞ = 0). Obviously in 
this case p∞ = 0.

Example 12. Consider the following autonomous Pfaffian system for m = n = 2 with no 
algebraic constraints:

Σ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂y1

∂x1
= y1

∂y1

∂x2
= y2

1

∂y2

∂x1
= y1y2 + 1 ∂y2

∂x2
= y2

1

.

In this example, I0 = 0. The Frobenius conditions are y2
1 and y2

1(y2 + y1 − 2); therefore, 
the polynomial ideal F ⊂ C[y1, y2] is the principal ideal generated by y2

1 and hence its 
radical I1 is generated by y1. In order to obtain the ideal I2, we compute the polynomials 
D1(y1) and D2(y1) obtaining y1 and y2

1 , respectively. Then I2 =
√

(y1, y2
1) = (y1) = I1

and so, p∞ = 1. Since (y1) �= C[y1, y2] the system Σ is integrable (but not completely 
integrable). Moreover, any solution γ := (γ1, γ2) must satisfy γ1(x1, x2) ≡ 0, because 
its image must be included in the line {y1 = 0}. Hence, γ2 does not depend on x2 and 

satisfies ∂γ2

∂x1
= 1 and therefore γ2(x1) = x1 + λ for a suitable constant λ ∈ C. In other 

words, the solutions of Σ are γ(x1, x2) = (0, x1 + λ).

Proposition 10 gives a conceptually simple criterion to decide the integrability of a 
Pfaffian system Σ: it suffices to compute p∞ and to check if the algebraic variety Vp∞ is 
empty or not. Even if the integer p∞ exists by Noetherianity, a priori it could be too big. 
However we will show that p∞ is in fact bounded by the dimension of the ambient space.

Proposition 13. Let Σ be an autonomous differential–algebraic Pfaffian system. If, for 
some p0 ∈ N0, C ⊆ Vp0 is an irreducible component which is also included in Vp0+1, then 
C is an irreducible component of Vp∞ . Moreover, Vp∞ = Vn+1 and then, p∞ ≤ n + 1.
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Proof. Since Vp0+1 is contained in Vp0 , the algebraic variety C is also an irreducible 
component of Vp0+1. In particular, in a neighborhood of any regular point of C, both 
varieties are the same. Then, due to Lemma 8, we can guarantee that for any regular 
point Q ∈ C passes the image of a solution of Σ. Since every solution of Σ is contained 
in all the varieties Vp, we conclude that the Zariski closure of the set of regular points of 
C is contained in Vp∞ . On the other hand, the regular points form a dense subset of C, 
so C is an irreducible algebraic set contained in Vp∞ . Moreover, it is also an irreducible 
component of Vp∞ because by assumption it is an irreducible component of Vp and 
Vp∞ ⊆ Vp.

If Vp is empty for some index p, then Vp∞ is empty too. Therefore, without loss of 
generality we may suppose Vn+1 �= ∅. Let Cn+1 be an irreducible component of Vn+1. 
There exists a decreasing chain of irreducible varieties Cp, p = 0, . . . , n +1, where each Cp

is an irreducible component of Vp. If the sequence (Cp)p is strictly decreasing, we have 
dim(Cn+1) < dim(Cn) < · · · < dim(C1) < dim(C0) ≤ n and then Cn+1 = ∅, leading to a 
contradiction. Hence the sequence (Cp)p stabilizes in Cn+1 for some index p ≤ n. Thus, 
Cn+1 is an irreducible component of Vp∞ . Since this holds for any irreducible component 
of Vn+1, we deduce that Vn+1 ⊆ Vp∞ . The other inclusion is always true; therefore, we 
have Vp∞ = Vn+1. �
Remark 14. The set M ⊆ C

n of all the regular points of Vp∞ is the integral sub-
manifold associated to the system Σ in the usual sense: for each point Q ∈ M , 
its tangent space TQM is spanned by the vector fields determined by the differential 
system Σ, and the dimension of M is maximal with this property. For instance, in 
the previous example we have Vp∞ = {0} × C and the solutions are γ(x1, x2) =
(0, x1 + λ).

Hence, the invariant � := dim(Vp∞) is a measure of the integrability of the system Σ: 
it agrees with the maximal dimension of integral submanifolds of Σ. The extreme cases 
� = n, and � = −1 correspond to the complete integrability and the inconsistency of Σ, 
respectively. In the previous example we have � = 1.

We summarize Propositions 10 and 13 in the following criterion concerning the inte-
grability of Σ:

Theorem 15 (Criterion for the integrability of a Pfaffian system). Let Σ be an au-
tonomous differential–algebraic Pfaffian system. Then

Σ is integrable ⇐⇒ Vp∞ �= ∅ ⇐⇒ Vn+1 �= ∅. �
For a non-autonomous differential–algebraic Pfaffian system Σ, Theorem 1 stated in 

the Introduction is proved by considering the associated autonomous system Σaut defined 
as in (3), and making all the constructions in this section from Σaut.
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3. Quantitative aspects

3.1. Some tools from effective commutative algebra and algebraic geometry

Throughout this section we will apply some results from effective commutative algebra 
and algebraic geometry. We recall them here in the precise formulations we will use.

One of the results we will apply is an effective version of the strong Hilbert’s Nullstel-
lensatz (see for instance [14, Theorem 1.3]):

Proposition 16. Let f1, . . . , fs ∈ C[z1, . . . , zn] be polynomials of degrees bounded by d, 
and let I = (f1, . . . , fs) ⊂ C[z1, . . . , zn]. Then (

√
I) dn ⊂ I.

In order to obtain upper bounds for the number and degrees of generators of the 
radical of a polynomial ideal, we will apply the following estimates, which follow from 
the algorithm presented in [19, Section 4] (see also [16,17]) and estimates for the number 
and degrees of polynomials involved in Gröbner basis computations (see, for instance, 
[5,21,7]):

Proposition 17. Let I = (f1, . . . , fs) ⊂ C[z1, . . . , zn] be an ideal generated by s polynomials 
of degrees at most d that define an algebraic variety of dimension r and let ν = max{1, r}. 
Then, there exists a universal constant c0 ≥ 1 such that the radical ideal 

√
I can be 

generated by (sd)2c0νn polynomials of degrees at most (sd)2c0νn .

3.2. An effective decision method

The integrability criteria presented in Section 2.5 enable the application of tools from 
effective algebraic geometry in order to derive a decision method for the Pfaffian systems 
under consideration.

As stated in Theorem 15, we have that for an autonomous differential system Σ in n
differential unknowns, Σ is integrable if and only if Vn+1 �= ∅. We start by estimating 
the number and degrees of polynomials generating the intermediate ideals Ip and the 
complexity of computing them.

Lemma 18. With our previous notation, let ν := max{1, dim(V0)}, σ := max{1, s}
and d := max{deg(f), deg(g)}. There exists a universal constant c > 0 such that for 
each 0 ≤ p ≤ p∞, the ideal Ip can be generated by a family of polynomials gp whose 
number and degrees are bounded by (nmσd)2c(p+1)νn . These polynomials can be computed 

algorithmically within complexity (nmσd)2O(n3) .

Proof. For p = 0, we have that g0 is a set of generators of 
√

(g); then, by Proposition 17, 
they can be chosen to be at most (σd)2c0νn polynomials of degrees bounded by (σd)2c0νn , 
where c0 is a universal constant.

The ideal I1 is the radical of the polynomial ideal generated by g0, Dj(g) for every g
in g0 and 1 ≤ j ≤ m, and the Frobenius conditions Dj(fik) −Dk(fij) for all indices i, j, k
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with i = 1, . . . , n, and j, k = 1, . . . , m. For each polynomial g in g0, we add m polynomials 
Dj(g), for 1 ≤ j ≤ m, and, since deg(f) ≤ d, we have that deg(Dj(g)) ≤ deg(g) + d. 
The Frobenius conditions are given by n

(
m
2
)

polynomials of degrees bounded by 2d. 
The number and degrees of all these polynomials are bounded by (nmσd)2cνn where 
c := c0 + 2 (a smaller constant c could be taken at this point but we make this choice 
for technical reasons). Then, by Proposition 17, the radical ideal I1 can be generated 
by a set of polynomials whose number and degrees are bounded by (nmσd)2(c+c0)νn+1 ≤
(nmσd)22cνn .

Assume that, for p ≥ 1, there is a system gp of polynomials that generate Ip whose 

number and degrees are bounded by (nmσd)2c(p+1)νn . Recalling that Ip+1 =
√
Ĩp =√

(gp;Dj(gp), 1 ≤ j ≤ m), the bounds from Proposition 17 imply that Ip+1 can be gen-
erated by a set of polynomials whose number and degrees are bounded by

(
(m + 1)((nmσd)2

c(p+1)νn

)2
)2c0νn

≤ (nmσd)2
c(p+1)νn+c0νn+2 ≤ (nmσd)2

c(p+2)νn

.

The complexity bound follows from the complexity of the computation of the radical 
of a polynomial ideal stated in [19, Section 4]. �

As a consequence of the previous lemma, we deduce that we can obtain a Gröbner 
basis of the defining ideal of Vn+1 within complexity (nmσd)2O(n3) , which enables us to 
decide immediately whether this variety is empty or not. We conclude:

Theorem 19. Let Σ be an autonomous differential–algebraic Pfaffian system:

Σ =

⎧⎨⎩
∂y
∂x = f(y),
g(y) = 0

where y = y1, . . . , yn and x = x1, . . . , xm, f = (fij)1≤i≤n,1≤j≤m and g = g1, . . . , gs
polynomials in C[y] with deg(f), deg(g) ≤ d. There is a deterministic algorithm that 
decides whether the system Σ is integrable or not within complexity (nmσd)2O(n3) , where 
σ = max{1, s}.

3.3. An effective differential Nullstellensatz for differential–algebraic Pfaffian systems

We write C{y} for the polynomial ring in the infinitely many variables yi,α where 
i = 1, . . . , n and α ∈ N

m
0 . This ring has naturally m many independent derivations 

∂j := ∂

∂xj
, for j = 1, . . . , m: for h ∈ C{y},

∂jh :=
∑ ∂h

∂yi,α
yi,α+ej ,
i,α
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where ej denotes the j-th vector of the canonical basis in Nm
0 . We identify the variable 

yi with yi,0 for 1 ≤ i ≤ n.
Consider an autonomous differential–algebraic Pfaffian system

Σ =

⎧⎨⎩
∂y
∂x = f(y),
g(y) = 0

where f , g are polynomials in C[y] of degrees bounded by an integer d. This system
induces a differential ideal in C{y} (that is, an ideal of C{y} which is closed under the 
derivations ∂j) simply by taking the ideal generated by the polynomials yi,ej − fij , gk
(with i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , s) and all their derivatives. We denote this 

ideal by [∂y
∂x − f , g].

By the differential Nullstellensatz (see [15, Chapter IV]), Σ has no solution if and only 

if 1 lies in the differential ideal [∂y
∂x − f , g] ⊂ C{y}. The aim of this section is to prove an 

upper bound for the number of derivations needed to obtain a representation of 1 as an 
element of this differential ideal assuming that Σ is inconsistent. A previous bound on 
this subject for general differential algebraic systems is given in [8] and improved in [10].

For each α = (α1, . . . , αm) ∈ N
m
0 , let ∂α := ∂α1

1 . . . ∂αm
m and |α| := α1 + . . .+ αm. For 

k ≥ 0, let y[k] be the set of all variables yi,α with |α| ≤ k and, for h ∈ C{y}, we denote 
h[k] := {∂αh : |α| ≤ k}.

We consider the algebraic ideals Ip ⊂ C[y] (0 ≤ p ≤ p∞) introduced in Definition 7. 
For p = 0, . . . , p∞, let gp ⊂ C[y] be a system of generators of the ideal Ip. We also 
denote g−1 := g. Since (g) ⊂ Ip for every p, the differential–algebraic Pfaffian system

Σp =

⎧⎨⎩
∂y
∂x = f(y),
gp(y) = 0

has no solution and so, by the differential Nullstellensatz, 1 ∈ [∂y
∂x

− f , gp]. Thus, there 

exists a non-negative integer k (depending on p) such that 1 ∈ ((∂y
∂x − f)[k], g[k]

p ) ⊆
C[y[k+1]]. Moreover, by Proposition 10, we have that {gp∞ = 0} = Vp∞ = ∅, and so, 
1 ∈ (gp∞) ⊂ C[y]. We define

kp = min
{
k ∈ N0 : 1 ∈

(
(∂y
∂x − f)[k],g[k]

p

)}
. (9)

In particular,

k−1 = min
{
k ∈ N0 : 1 ∈

(
(∂y
∂x

− f)[k],g[k]
)}

is the order of differentiation of the input equations we want to bound.
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Note that, since (gp) = Ip ⊂ Ip+1 = (gp+1) for every p, we have that kp+1 ≤ kp. In 
addition, as 1 ∈ (gp∞), we have that kp∞ = 0. We will obtain an upper bound for k−1 by 
recursively computing upper bounds for kp for p = p∞, . . . , 0. In order to do this, we will 
use the following auxiliary sequence of non-negative integers defined for p = 0 . . . , p∞:

ε0 := min{ε ∈ N : Iε0 ⊂ (g)},

ε1 := min{ε ∈ N : Iε1 ⊂ Ĩ0 + F},

εp := min{ε ∈ N : Iεp ⊂ Ĩp−1}, for 2 ≤ p ≤ p∞.

By the definition of the ideals Ip and Ĩp, it follows that ε0 is the Noether exponent 
of the ideal (g), ε1 is the Noether exponent of the ideal Ĩ0 + F and, for p ≥ 2, εp is the 
Noether exponent of Ĩp−1 (recall that the Noether exponent of an ideal I is the smallest 

integer ε such that (
√
I)ε ⊆ I). Taking into account that F ⊂

(
(∂y
∂x − f)[1]

)
and, for 

p ≥ 1, Ĩp−1 = (gp−1; Dj(gp−1), 1 ≤ j ≤ m) and Dj(gp−1) ≡ ∂j gp−1 mod
(∂y
∂x − f

)
, it 

follows that

I
ε0
0 ⊂
(
g−1
)
, I

ε1
1 ⊂
(
(∂y
∂x − f)[1],g[1]

0

)
,

and Iεpp ⊂
(∂y
∂x − f ,g[1]

p−1

)
for p ≥ 2. (10)

The following is the key result that enables us to prove the required bound for the 
integers kp:

Lemma 20. Let 0 ≤ p ≤ p∞ and g ∈ Ip. Then, for every k ∈ N0, all the partial derivatives 

∂αg, for α ∈ N
m
0 with |α| ≤ k, lie in the polynomial ideal 

√(
(∂y
∂x

− f)[1+εpk],g[1+εpk]
p−1

)
.

Proof. Consider the usual graded lexicographic order in (Nm
0 , ≺): for α, β ∈ N

m
0 , α ≺ β

if and only if either |α| < |β| or |α| = |β| and there exists j, 1 ≤ j ≤ m, such that 
αk = βk for every 1 ≤ k < j and αj < βj . We proceed inductively following this order.

By the inclusions in (10), we have that gεp ∈
(
(∂y
∂x−f)[1], g[1]

p−1

)
and so, the statement 

holds for k = 0.

Claim. Given ε ∈ N, for every α ∈ N
m
0 , there exist c ∈ N and a differential polynomial 

G ∈ C{y} in the ideal generated by the partial derivatives (∂βg)β≺α such that

∂εα(gε) = c · (∂αg)ε + G. (11)

Proof of the claim. According to the Leibniz formula, we have that

∂εα(gε) =
∑

cν (∂ν1g) · · · (∂νεg) ,

ν
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where cν > 0 and ν runs over all matrices in Nε×m
0 , with rows ν1, . . . , νε ∈ N

m
0 , such that 

the sums of their columns are εα1, . . . , εαm respectively.
Let us analyze each term of the above sum. If, for some i = 1, . . . , ε, we have that 

|νi| < |α|, the term lies in the ideal generated by 
(
∂βg
)
β≺α

and it will contribute to the 
differential polynomial G.

Assume now that |νi| ≥ |α| for every i. Then, |νi| = |α| for every i, since |ν1| + · · · +
|νε| = ε|α|. If νi ≺ α for some i, the term will contribute to the polynomial G. Then, 
it remains to consider the case where no νi is smaller than α in the order ≺. We claim 
that in this case νi = α for every i. Otherwise, let j0 = min{j | ∃i : αj < νij} and let 
i0 be such that νi0 is the smallest among all νi such that αj0 < νij0 . By the minimality 
of j0 and νi0 , all the entries νij0 of the j0th column of the matrix ν are greater than or 
equal to αj0 and for at least one index, i0, the strict inequality holds; therefore, the sum 
of the j0th column of ν is greater than εαj0 , which leads to a contradiction. Therefore, 
in the only term not containing a factor with νi ≺ α we have νi = α for every i and so, 
the term equals c · (∂αg)ε for a combinatorial constant c.

Since gεp ∈
(
(∂y
∂x −f)[1], g[1]

p−1

)
, it follows that ∂εpα(gεp) ∈

((∂y
∂x −f

)[1+εpk]
, g[1+εpk]

p−1

)
for every α ∈ N

m
0 with |α| ≤ k; in particular, ∂εpα(gεp) lies in the radical of this polyno-

mial ideal. By induction in (Nm
0 , ≺), this property along with formula (11) of the claim

imply that

∂αg ∈
√((∂y

∂x − f
)[1+εpk]

,g[1+εpk]
p−1

)
for every α ∈ N

m
0 with |α| ≤ k. �

Corollary 21. Let 0 ≤ p ≤ p∞. For every k ∈ N0, if 1 ∈
(
(∂y
∂x

− f)[k], g[k]
p

)
, then 

1 ∈
(
(∂y
∂x − f)[1+εpk], g[1+εpk]

p−1

)
. In particular, kp−1 ≤ 1 + εpkp.

Proof. Since εp ≥ 1, it follows that (∂y
∂x − f)[k] ⊂ (∂y

∂x − f)[1+εpk]. In addition, applying 

Lemma 20 to the polynomials in gp, we deduce that (g[k]
p )⊂
√(

(∂y
∂x − f)[1+εpk],g[1+εpk]

p−1

)
. 

Then,

(
(∂y
∂x − f)[k],g[k]

p

)
⊂
√(

(∂y
∂x − f)[1+εpk],g[1+εpk]

p−1

)
,

which implies the first assertion of the corollary.
The second assertion follows from the definition of the integers kp in equation (9). �

Corollary 22. Let μ := min{0 ≤ p ≤ p∞ : kp = 0}. Then, k−1 ≤ (μ + 1)
μ−1∏

εp.

p=0
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Proof. By applying recursively the inequality kp−1 ≤ 1 +εpkp from the previous corollary, 

it follows easily that kμ−j ≤ j
μ−1∏

i=μ−j+1
εi for j = 1, . . . , μ, μ + 1. �

Now, to prove our main result, it suffices only to bound the Noether exponents εp for 
p = 0, . . . , μ − 1, which will be easily done from Proposition 16.

Theorem 23. Let x = x1, . . . , xm be independent variables and y = y1, . . . , ym be differ-
ential variables, and let f = (fij)1≤i≤n,1≤j≤m and g = g1, . . . , gs be polynomials in C[y]
of degrees bounded by d. Let V ⊂ C

n be the variety defined as the set of zeros of the ideal 
(g) and ν := max{1, dim(V)}. Then, there exists K ≤ ((s +nm2)d)2Cν2n , for a universal 
constant C > 0, such that

1 ∈ [∂y
∂x − f ,g] ⇐⇒ 1 ∈

(
(∂y
∂x − f)[K],g[K]

)
.

Proof. Following Corollaries 22 and 9, notice first that μ ≤ p∞ ≤ ν + 1. On the other 
hand, by Proposition 16 and Lemma 18, it follows that the Noether exponents εp can be 
bounded as follows:

ε0 ≤ dn and εp ≤ (nmσd)n2c(p+1)νn

, 1 ≤ p ≤ p∞.

By Corollary 22, we have that, for a suitable constant c,

K = k−1 ≤ (n + 2)
ν∏

p=0
(nmσd)n2c(p+1)νn ≤

≤ (n + 2)(nmσd)n21+c(ν+1)νn ≤ (nmσd)2
Cν2n

for a suitable constant C. �
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